Termination of the given ITRSProblem could successfully be proven:
↳ ITRS
↳ ITRStoIDPProof
ITRS problem:
The following domains are used:
z
The TRS R consists of the following rules:
eval(x) → Cond_eval1(&&(&&(>@z(x, 0@z), !(=@z(x, 0@z))), =@z(%@z(x, 2@z), 0@z)), x)
Cond_eval1(TRUE, x) → eval(/@z(x, 2@z))
eval(x) → Cond_eval(&&(&&(>@z(x, 0@z), !(=@z(x, 0@z))), >@z(%@z(x, 2@z), 0@z)), x)
Cond_eval(TRUE, x) → eval(-@z(x, 1@z))
The set Q consists of the following terms:
eval(x0)
Cond_eval1(TRUE, x0)
Cond_eval(TRUE, x0)
Added dependency pairs
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
I DP problem:
The following domains are used:
z
The ITRS R consists of the following rules:
eval(x) → Cond_eval1(&&(&&(>@z(x, 0@z), !(=@z(x, 0@z))), =@z(%@z(x, 2@z), 0@z)), x)
Cond_eval1(TRUE, x) → eval(/@z(x, 2@z))
eval(x) → Cond_eval(&&(&&(>@z(x, 0@z), !(=@z(x, 0@z))), >@z(%@z(x, 2@z), 0@z)), x)
Cond_eval(TRUE, x) → eval(-@z(x, 1@z))
The integer pair graph contains the following rules and edges:
(0): COND_EVAL1(TRUE, x[0]) → EVAL(/@z(x[0], 2@z))
(1): EVAL(x[1]) → COND_EVAL1(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)), x[1])
(2): EVAL(x[2]) → COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2])
(3): COND_EVAL(TRUE, x[3]) → EVAL(-@z(x[3], 1@z))
(0) -> (1), if ((/@z(x[0], 2@z) →* x[1]))
(0) -> (2), if ((/@z(x[0], 2@z) →* x[2]))
(1) -> (0), if ((x[1] →* x[0])∧(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)) →* TRUE))
(2) -> (3), if ((x[2] →* x[3])∧(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)) →* TRUE))
(3) -> (1), if ((-@z(x[3], 1@z) →* x[1]))
(3) -> (2), if ((-@z(x[3], 1@z) →* x[2]))
The set Q consists of the following terms:
eval(x0)
Cond_eval1(TRUE, x0)
Cond_eval(TRUE, x0)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
I DP problem:
The following domains are used:
z
R is empty.
The integer pair graph contains the following rules and edges:
(0): COND_EVAL1(TRUE, x[0]) → EVAL(/@z(x[0], 2@z))
(1): EVAL(x[1]) → COND_EVAL1(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)), x[1])
(2): EVAL(x[2]) → COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2])
(3): COND_EVAL(TRUE, x[3]) → EVAL(-@z(x[3], 1@z))
(0) -> (1), if ((/@z(x[0], 2@z) →* x[1]))
(0) -> (2), if ((/@z(x[0], 2@z) →* x[2]))
(1) -> (0), if ((x[1] →* x[0])∧(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)) →* TRUE))
(2) -> (3), if ((x[2] →* x[3])∧(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)) →* TRUE))
(3) -> (1), if ((-@z(x[3], 1@z) →* x[1]))
(3) -> (2), if ((-@z(x[3], 1@z) →* x[2]))
The set Q consists of the following terms:
eval(x0)
Cond_eval1(TRUE, x0)
Cond_eval(TRUE, x0)
The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.
For Pair COND_EVAL1(TRUE, x) → EVAL(/@z(x, 2@z)) the following chains were created:
- We consider the chain EVAL(x[1]) → COND_EVAL1(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)), x[1]), COND_EVAL1(TRUE, x[0]) → EVAL(/@z(x[0], 2@z)) which results in the following constraint:
(1) (x[1]=x[0]∧&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z))=TRUE ⇒ COND_EVAL1(TRUE, x[0])≥NonInfC∧COND_EVAL1(TRUE, x[0])≥EVAL(/@z(x[0], 2@z))∧(UIncreasing(EVAL(/@z(x[0], 2@z))), ≥))
We simplified constraint (1) using rules (III), (IDP_BOOLEAN) which results in the following new constraints:
(2) (>@z(x[1], 0@z)=TRUE∧>=@z(%@z(x[1], 2@z), 0@z)=TRUE∧<=@z(%@z(x[1], 2@z), 0@z)=TRUE ⇒ COND_EVAL1(TRUE, x[1])≥NonInfC∧COND_EVAL1(TRUE, x[1])≥EVAL(/@z(x[1], 2@z))∧(UIncreasing(EVAL(/@z(x[0], 2@z))), ≥))
(3) (>@z(x[1], 0@z)=TRUE∧>=@z(%@z(x[1], 2@z), 0@z)=TRUE∧<=@z(%@z(x[1], 2@z), 0@z)=TRUE∧<@z(x[1], 0@z)=TRUE ⇒ COND_EVAL1(TRUE, x[1])≥NonInfC∧COND_EVAL1(TRUE, x[1])≥EVAL(/@z(x[1], 2@z))∧(UIncreasing(EVAL(/@z(x[0], 2@z))), ≥))
We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(4) (x[1] + -1 ≥ 0∧max{2, -2} ≥ 0∧(-1)min{2, -2} ≥ 0 ⇒ (UIncreasing(EVAL(/@z(x[0], 2@z))), ≥)∧0 ≥ 0∧x[1] + (-1)max{x[1], (-1)x[1]} ≥ 0)
We simplified constraint (3) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(5) (x[1] + -1 ≥ 0∧max{2, -2} ≥ 0∧(-1)min{2, -2} ≥ 0∧-1 + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(/@z(x[0], 2@z))), ≥)∧0 ≥ 0∧x[1] + (-1)max{x[1], (-1)x[1]} ≥ 0)
We simplified constraint (4) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(6) (x[1] + -1 ≥ 0∧max{2, -2} ≥ 0∧(-1)min{2, -2} ≥ 0 ⇒ (UIncreasing(EVAL(/@z(x[0], 2@z))), ≥)∧0 ≥ 0∧x[1] + (-1)max{x[1], (-1)x[1]} ≥ 0)
We simplified constraint (5) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(7) (x[1] + -1 ≥ 0∧max{2, -2} ≥ 0∧(-1)min{2, -2} ≥ 0∧-1 + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(/@z(x[0], 2@z))), ≥)∧0 ≥ 0∧x[1] + (-1)max{x[1], (-1)x[1]} ≥ 0)
We simplified constraint (6) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(8) (4 ≥ 0∧x[1] + -1 ≥ 0∧2 ≥ 0∧(2)x[1] ≥ 0∧2 ≥ 0 ⇒ (UIncreasing(EVAL(/@z(x[0], 2@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
We solved constraint (7) using rule (POLY_REMOVE_MIN_MAX).We simplified constraint (8) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(9) (4 ≥ 0∧x[1] ≥ 0∧2 ≥ 0∧2 + (2)x[1] ≥ 0∧2 ≥ 0 ⇒ (UIncreasing(EVAL(/@z(x[0], 2@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
For Pair EVAL(x) → COND_EVAL1(&&(&&(>@z(x, 0@z), !(=@z(x, 0@z))), =@z(%@z(x, 2@z), 0@z)), x) the following chains were created:
- We consider the chain EVAL(x[1]) → COND_EVAL1(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)), x[1]) which results in the following constraint:
(10) (EVAL(x[1])≥NonInfC∧EVAL(x[1])≥COND_EVAL1(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)), x[1])∧(UIncreasing(COND_EVAL1(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)), x[1])), ≥))
We simplified constraint (10) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(11) ((UIncreasing(COND_EVAL1(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)), x[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (11) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(12) ((UIncreasing(COND_EVAL1(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)), x[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (12) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(13) ((UIncreasing(COND_EVAL1(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)), x[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (13) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(14) ((UIncreasing(COND_EVAL1(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)), x[1])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0)
For Pair EVAL(x) → COND_EVAL(&&(&&(>@z(x, 0@z), !(=@z(x, 0@z))), >@z(%@z(x, 2@z), 0@z)), x) the following chains were created:
- We consider the chain EVAL(x[2]) → COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2]) which results in the following constraint:
(15) (EVAL(x[2])≥NonInfC∧EVAL(x[2])≥COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2])∧(UIncreasing(COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2])), ≥))
We simplified constraint (15) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(16) ((UIncreasing(COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (16) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(17) ((UIncreasing(COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (17) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(18) ((UIncreasing(COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (18) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(19) ((UIncreasing(COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2])), ≥)∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0)
For Pair COND_EVAL(TRUE, x) → EVAL(-@z(x, 1@z)) the following chains were created:
- We consider the chain EVAL(x[2]) → COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2]), COND_EVAL(TRUE, x[3]) → EVAL(-@z(x[3], 1@z)), EVAL(x[1]) → COND_EVAL1(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)), x[1]) which results in the following constraint:
(20) (x[2]=x[3]∧&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z))=TRUE∧-@z(x[3], 1@z)=x[1] ⇒ COND_EVAL(TRUE, x[3])≥NonInfC∧COND_EVAL(TRUE, x[3])≥EVAL(-@z(x[3], 1@z))∧(UIncreasing(EVAL(-@z(x[3], 1@z))), ≥))
We simplified constraint (20) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraints:
(21) (>@z(%@z(x[2], 2@z), 0@z)=TRUE∧>@z(x[2], 0@z)=TRUE ⇒ COND_EVAL(TRUE, x[2])≥NonInfC∧COND_EVAL(TRUE, x[2])≥EVAL(-@z(x[2], 1@z))∧(UIncreasing(EVAL(-@z(x[3], 1@z))), ≥))
(22) (>@z(%@z(x[2], 2@z), 0@z)=TRUE∧>@z(x[2], 0@z)=TRUE∧<@z(x[2], 0@z)=TRUE ⇒ COND_EVAL(TRUE, x[2])≥NonInfC∧COND_EVAL(TRUE, x[2])≥EVAL(-@z(x[2], 1@z))∧(UIncreasing(EVAL(-@z(x[3], 1@z))), ≥))
We simplified constraint (21) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(23) (-1 + max{2, -2} ≥ 0∧-1 + x[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[3], 1@z))), ≥)∧-2 + (-1)Bound + x[2] ≥ 0∧0 ≥ 0)
We simplified constraint (22) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(24) (-1 + max{2, -2} ≥ 0∧-1 + x[2] ≥ 0∧-1 + (-1)x[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[3], 1@z))), ≥)∧-2 + (-1)Bound + x[2] ≥ 0∧0 ≥ 0)
We simplified constraint (23) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(25) (-1 + max{2, -2} ≥ 0∧-1 + x[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[3], 1@z))), ≥)∧-2 + (-1)Bound + x[2] ≥ 0∧0 ≥ 0)
We simplified constraint (24) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(26) (-1 + max{2, -2} ≥ 0∧-1 + x[2] ≥ 0∧-1 + (-1)x[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[3], 1@z))), ≥)∧-2 + (-1)Bound + x[2] ≥ 0∧0 ≥ 0)
We simplified constraint (25) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(27) (1 ≥ 0∧-1 + x[2] ≥ 0∧4 ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[3], 1@z))), ≥)∧-2 + (-1)Bound + x[2] ≥ 0)
We solved constraint (26) using rule (POLY_REMOVE_MIN_MAX).We simplified constraint (27) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(28) (1 ≥ 0∧x[2] ≥ 0∧4 ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[3], 1@z))), ≥)∧-1 + (-1)Bound + x[2] ≥ 0)
- We consider the chain EVAL(x[2]) → COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2]), COND_EVAL(TRUE, x[3]) → EVAL(-@z(x[3], 1@z)), EVAL(x[2]) → COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2]) which results in the following constraint:
(29) (x[2]=x[3]∧&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z))=TRUE∧-@z(x[3], 1@z)=x[2]1 ⇒ COND_EVAL(TRUE, x[3])≥NonInfC∧COND_EVAL(TRUE, x[3])≥EVAL(-@z(x[3], 1@z))∧(UIncreasing(EVAL(-@z(x[3], 1@z))), ≥))
We simplified constraint (29) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraints:
(30) (>@z(%@z(x[2], 2@z), 0@z)=TRUE∧>@z(x[2], 0@z)=TRUE ⇒ COND_EVAL(TRUE, x[2])≥NonInfC∧COND_EVAL(TRUE, x[2])≥EVAL(-@z(x[2], 1@z))∧(UIncreasing(EVAL(-@z(x[3], 1@z))), ≥))
(31) (>@z(%@z(x[2], 2@z), 0@z)=TRUE∧>@z(x[2], 0@z)=TRUE∧<@z(x[2], 0@z)=TRUE ⇒ COND_EVAL(TRUE, x[2])≥NonInfC∧COND_EVAL(TRUE, x[2])≥EVAL(-@z(x[2], 1@z))∧(UIncreasing(EVAL(-@z(x[3], 1@z))), ≥))
We simplified constraint (30) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(32) (-1 + max{2, -2} ≥ 0∧-1 + x[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[3], 1@z))), ≥)∧-2 + (-1)Bound + x[2] ≥ 0∧0 ≥ 0)
We simplified constraint (31) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(33) (-1 + max{2, -2} ≥ 0∧-1 + x[2] ≥ 0∧-1 + (-1)x[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[3], 1@z))), ≥)∧-2 + (-1)Bound + x[2] ≥ 0∧0 ≥ 0)
We simplified constraint (32) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(34) (-1 + max{2, -2} ≥ 0∧-1 + x[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[3], 1@z))), ≥)∧-2 + (-1)Bound + x[2] ≥ 0∧0 ≥ 0)
We simplified constraint (33) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(35) (-1 + max{2, -2} ≥ 0∧-1 + x[2] ≥ 0∧-1 + (-1)x[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[3], 1@z))), ≥)∧-2 + (-1)Bound + x[2] ≥ 0∧0 ≥ 0)
We simplified constraint (34) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(36) (4 ≥ 0∧-1 + x[2] ≥ 0∧1 ≥ 0 ⇒ -2 + (-1)Bound + x[2] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[3], 1@z))), ≥))
We solved constraint (35) using rule (POLY_REMOVE_MIN_MAX).We simplified constraint (36) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(37) (4 ≥ 0∧x[2] ≥ 0∧1 ≥ 0 ⇒ -1 + (-1)Bound + x[2] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[3], 1@z))), ≥))
To summarize, we get the following constraints P≥ for the following pairs.
- COND_EVAL1(TRUE, x) → EVAL(/@z(x, 2@z))
- (4 ≥ 0∧x[1] ≥ 0∧2 ≥ 0∧2 + (2)x[1] ≥ 0∧2 ≥ 0 ⇒ (UIncreasing(EVAL(/@z(x[0], 2@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
- EVAL(x) → COND_EVAL1(&&(&&(>@z(x, 0@z), !(=@z(x, 0@z))), =@z(%@z(x, 2@z), 0@z)), x)
- ((UIncreasing(COND_EVAL1(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)), x[1])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0)
- EVAL(x) → COND_EVAL(&&(&&(>@z(x, 0@z), !(=@z(x, 0@z))), >@z(%@z(x, 2@z), 0@z)), x)
- ((UIncreasing(COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2])), ≥)∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0)
- COND_EVAL(TRUE, x) → EVAL(-@z(x, 1@z))
- (1 ≥ 0∧x[2] ≥ 0∧4 ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[3], 1@z))), ≥)∧-1 + (-1)Bound + x[2] ≥ 0)
- (4 ≥ 0∧x[2] ≥ 0∧1 ≥ 0 ⇒ -1 + (-1)Bound + x[2] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[3], 1@z))), ≥))
The constraints for P> respective Pbound are constructed from P≥ where we just replace every occurence of "t ≥ s" in P≥ by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(0@z) = 0
POL(TRUE) = 1
POL(&&(x1, x2)) = 0
POL(2@z) = 2
POL(EVAL(x1)) = -1 + x1
POL(!(x1)) = -1
POL(FALSE) = 0
POL(>@z(x1, x2)) = -1
POL(=@z(x1, x2)) = -1
POL(COND_EVAL1(x1, x2)) = -1 + x2
POL(COND_EVAL(x1, x2)) = -1 + x2 + (-1)x1
POL(1@z) = 1
POL(undefined) = -1
Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)
POL(%@z(x1, 2@z)1 @ {}) = max{x2, (-1)x2}
POL(%@z(x1, 2@z)-1 @ {}) = min{x2, (-1)x2}
POL(/@z(x1, 2@z)1 @ {EVAL_1/0}) = -1 + max{x1, (-1)x1}
The following pairs are in P>:
COND_EVAL1(TRUE, x[0]) → EVAL(/@z(x[0], 2@z))
The following pairs are in Pbound:
COND_EVAL(TRUE, x[3]) → EVAL(-@z(x[3], 1@z))
The following pairs are in P≥:
EVAL(x[1]) → COND_EVAL1(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)), x[1])
EVAL(x[2]) → COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2])
COND_EVAL(TRUE, x[3]) → EVAL(-@z(x[3], 1@z))
At least the following rules have been oriented under context sensitive arithmetic replacement:
&&(FALSE, FALSE)1 ↔ FALSE1
-@z1 ↔
TRUE1 → &&(TRUE, TRUE)1
&&(TRUE, FALSE)1 ↔ FALSE1
FALSE1 → &&(FALSE, TRUE)1
/@z1 →
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
I DP problem:
The following domains are used:
z
R is empty.
The integer pair graph contains the following rules and edges:
(1): EVAL(x[1]) → COND_EVAL1(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)), x[1])
(2): EVAL(x[2]) → COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2])
(3): COND_EVAL(TRUE, x[3]) → EVAL(-@z(x[3], 1@z))
(3) -> (1), if ((-@z(x[3], 1@z) →* x[1]))
(2) -> (3), if ((x[2] →* x[3])∧(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)) →* TRUE))
(3) -> (2), if ((-@z(x[3], 1@z) →* x[2]))
The set Q consists of the following terms:
eval(x0)
Cond_eval1(TRUE, x0)
Cond_eval(TRUE, x0)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
I DP problem:
The following domains are used:
z
R is empty.
The integer pair graph contains the following rules and edges:
(2): EVAL(x[2]) → COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2])
(3): COND_EVAL(TRUE, x[3]) → EVAL(-@z(x[3], 1@z))
(2) -> (3), if ((x[2] →* x[3])∧(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)) →* TRUE))
(3) -> (2), if ((-@z(x[3], 1@z) →* x[2]))
The set Q consists of the following terms:
eval(x0)
Cond_eval1(TRUE, x0)
Cond_eval(TRUE, x0)
The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.
For Pair EVAL(x[2]) → COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2]) the following chains were created:
- We consider the chain EVAL(x[2]) → COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2]) which results in the following constraint:
(1) (EVAL(x[2])≥NonInfC∧EVAL(x[2])≥COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2])∧(UIncreasing(COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2])), ≥))
We simplified constraint (1) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(2) ((UIncreasing(COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (2) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(3) ((UIncreasing(COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (3) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(4) ((UIncreasing(COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (4) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(5) ((UIncreasing(COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2])), ≥)∧0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0)
For Pair COND_EVAL(TRUE, x[3]) → EVAL(-@z(x[3], 1@z)) the following chains were created:
- We consider the chain EVAL(x[2]) → COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2]), COND_EVAL(TRUE, x[3]) → EVAL(-@z(x[3], 1@z)), EVAL(x[2]) → COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2]) which results in the following constraint:
(6) (x[2]=x[3]∧&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z))=TRUE∧-@z(x[3], 1@z)=x[2]1 ⇒ COND_EVAL(TRUE, x[3])≥NonInfC∧COND_EVAL(TRUE, x[3])≥EVAL(-@z(x[3], 1@z))∧(UIncreasing(EVAL(-@z(x[3], 1@z))), ≥))
We simplified constraint (6) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraints:
(7) (>@z(%@z(x[2], 2@z), 0@z)=TRUE∧>@z(x[2], 0@z)=TRUE ⇒ COND_EVAL(TRUE, x[2])≥NonInfC∧COND_EVAL(TRUE, x[2])≥EVAL(-@z(x[2], 1@z))∧(UIncreasing(EVAL(-@z(x[3], 1@z))), ≥))
(8) (>@z(%@z(x[2], 2@z), 0@z)=TRUE∧>@z(x[2], 0@z)=TRUE∧<@z(x[2], 0@z)=TRUE ⇒ COND_EVAL(TRUE, x[2])≥NonInfC∧COND_EVAL(TRUE, x[2])≥EVAL(-@z(x[2], 1@z))∧(UIncreasing(EVAL(-@z(x[3], 1@z))), ≥))
We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(9) (max{2, -2} + -1 ≥ 0∧-1 + x[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[3], 1@z))), ≥)∧-1 + (-1)Bound + (2)x[2] ≥ 0∧0 ≥ 0)
We simplified constraint (8) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(10) (max{2, -2} + -1 ≥ 0∧-1 + x[2] ≥ 0∧-1 + (-1)x[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[3], 1@z))), ≥)∧-1 + (-1)Bound + (2)x[2] ≥ 0∧0 ≥ 0)
We simplified constraint (9) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(11) (max{2, -2} + -1 ≥ 0∧-1 + x[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[3], 1@z))), ≥)∧-1 + (-1)Bound + (2)x[2] ≥ 0∧0 ≥ 0)
We simplified constraint (10) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(12) (max{2, -2} + -1 ≥ 0∧-1 + x[2] ≥ 0∧-1 + (-1)x[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[3], 1@z))), ≥)∧-1 + (-1)Bound + (2)x[2] ≥ 0∧0 ≥ 0)
We simplified constraint (11) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(13) (4 ≥ 0∧1 ≥ 0∧-1 + x[2] ≥ 0 ⇒ -1 + (-1)Bound + (2)x[2] ≥ 0∧(UIncreasing(EVAL(-@z(x[3], 1@z))), ≥)∧0 ≥ 0)
We solved constraint (12) using rule (POLY_REMOVE_MIN_MAX).We simplified constraint (13) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(14) (4 ≥ 0∧1 ≥ 0∧x[2] ≥ 0 ⇒ 1 + (-1)Bound + (2)x[2] ≥ 0∧(UIncreasing(EVAL(-@z(x[3], 1@z))), ≥)∧0 ≥ 0)
To summarize, we get the following constraints P≥ for the following pairs.
- EVAL(x[2]) → COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2])
- ((UIncreasing(COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2])), ≥)∧0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0)
- COND_EVAL(TRUE, x[3]) → EVAL(-@z(x[3], 1@z))
- (4 ≥ 0∧1 ≥ 0∧x[2] ≥ 0 ⇒ 1 + (-1)Bound + (2)x[2] ≥ 0∧(UIncreasing(EVAL(-@z(x[3], 1@z))), ≥)∧0 ≥ 0)
The constraints for P> respective Pbound are constructed from P≥ where we just replace every occurence of "t ≥ s" in P≥ by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(0@z) = 0
POL(TRUE) = -1
POL(&&(x1, x2)) = 1
POL(2@z) = 2
POL(EVAL(x1)) = (2)x1
POL(!(x1)) = -1
POL(FALSE) = 1
POL(>@z(x1, x2)) = -1
POL(=@z(x1, x2)) = -1
POL(COND_EVAL(x1, x2)) = -1 + (2)x2
POL(1@z) = 1
POL(undefined) = -1
Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)
POL(%@z(x1, 2@z)1 @ {}) = max{x2, (-1)x2}
The following pairs are in P>:
EVAL(x[2]) → COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2])
COND_EVAL(TRUE, x[3]) → EVAL(-@z(x[3], 1@z))
The following pairs are in Pbound:
COND_EVAL(TRUE, x[3]) → EVAL(-@z(x[3], 1@z))
The following pairs are in P≥:
none
At least the following rules have been oriented under context sensitive arithmetic replacement:
&&(FALSE, FALSE)1 ↔ FALSE1
-@z1 ↔
&&(TRUE, TRUE)1 → TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDP
I DP problem:
The following domains are used:none
R is empty.
The integer pair graph is empty.
The set Q consists of the following terms:
eval(x0)
Cond_eval1(TRUE, x0)
Cond_eval(TRUE, x0)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs.
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
I DP problem:
The following domains are used:
z
R is empty.
The integer pair graph contains the following rules and edges:
(2): EVAL(x[2]) → COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2])
The set Q consists of the following terms:
eval(x0)
Cond_eval1(TRUE, x0)
Cond_eval(TRUE, x0)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
I DP problem:
The following domains are used:
z
R is empty.
The integer pair graph contains the following rules and edges:
(0): COND_EVAL1(TRUE, x[0]) → EVAL(/@z(x[0], 2@z))
(1): EVAL(x[1]) → COND_EVAL1(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)), x[1])
(2): EVAL(x[2]) → COND_EVAL(&&(&&(>@z(x[2], 0@z), !(=@z(x[2], 0@z))), >@z(%@z(x[2], 2@z), 0@z)), x[2])
(0) -> (1), if ((/@z(x[0], 2@z) →* x[1]))
(0) -> (2), if ((/@z(x[0], 2@z) →* x[2]))
(1) -> (0), if ((x[1] →* x[0])∧(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)) →* TRUE))
The set Q consists of the following terms:
eval(x0)
Cond_eval1(TRUE, x0)
Cond_eval(TRUE, x0)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
I DP problem:
The following domains are used:
z
R is empty.
The integer pair graph contains the following rules and edges:
(1): EVAL(x[1]) → COND_EVAL1(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)), x[1])
(0): COND_EVAL1(TRUE, x[0]) → EVAL(/@z(x[0], 2@z))
(0) -> (1), if ((/@z(x[0], 2@z) →* x[1]))
(1) -> (0), if ((x[1] →* x[0])∧(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)) →* TRUE))
The set Q consists of the following terms:
eval(x0)
Cond_eval1(TRUE, x0)
Cond_eval(TRUE, x0)
The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.
For Pair EVAL(x[1]) → COND_EVAL1(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)), x[1]) the following chains were created:
- We consider the chain EVAL(x[1]) → COND_EVAL1(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)), x[1]) which results in the following constraint:
(1) (EVAL(x[1])≥NonInfC∧EVAL(x[1])≥COND_EVAL1(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)), x[1])∧(UIncreasing(COND_EVAL1(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)), x[1])), ≥))
We simplified constraint (1) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(2) ((UIncreasing(COND_EVAL1(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)), x[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (2) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(3) ((UIncreasing(COND_EVAL1(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)), x[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (3) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(4) ((UIncreasing(COND_EVAL1(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)), x[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
We simplified constraint (4) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(5) (0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)), x[1])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
For Pair COND_EVAL1(TRUE, x[0]) → EVAL(/@z(x[0], 2@z)) the following chains were created:
- We consider the chain EVAL(x[1]) → COND_EVAL1(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)), x[1]), COND_EVAL1(TRUE, x[0]) → EVAL(/@z(x[0], 2@z)) which results in the following constraint:
(6) (x[1]=x[0]∧&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z))=TRUE ⇒ COND_EVAL1(TRUE, x[0])≥NonInfC∧COND_EVAL1(TRUE, x[0])≥EVAL(/@z(x[0], 2@z))∧(UIncreasing(EVAL(/@z(x[0], 2@z))), ≥))
We simplified constraint (6) using rules (III), (IDP_BOOLEAN) which results in the following new constraints:
(7) (>@z(x[1], 0@z)=TRUE∧>=@z(%@z(x[1], 2@z), 0@z)=TRUE∧<=@z(%@z(x[1], 2@z), 0@z)=TRUE ⇒ COND_EVAL1(TRUE, x[1])≥NonInfC∧COND_EVAL1(TRUE, x[1])≥EVAL(/@z(x[1], 2@z))∧(UIncreasing(EVAL(/@z(x[0], 2@z))), ≥))
(8) (>@z(x[1], 0@z)=TRUE∧>=@z(%@z(x[1], 2@z), 0@z)=TRUE∧<=@z(%@z(x[1], 2@z), 0@z)=TRUE∧<@z(x[1], 0@z)=TRUE ⇒ COND_EVAL1(TRUE, x[1])≥NonInfC∧COND_EVAL1(TRUE, x[1])≥EVAL(/@z(x[1], 2@z))∧(UIncreasing(EVAL(/@z(x[0], 2@z))), ≥))
We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(9) (x[1] + -1 ≥ 0∧max{2, -2} ≥ 0∧(-1)min{2, -2} ≥ 0 ⇒ (UIncreasing(EVAL(/@z(x[0], 2@z))), ≥)∧-1 + (-1)Bound + x[1] ≥ 0∧x[1] + (-1)max{x[1], (-1)x[1]} ≥ 0)
We simplified constraint (8) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(10) (x[1] + -1 ≥ 0∧max{2, -2} ≥ 0∧(-1)min{2, -2} ≥ 0∧-1 + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(/@z(x[0], 2@z))), ≥)∧-1 + (-1)Bound + x[1] ≥ 0∧x[1] + (-1)max{x[1], (-1)x[1]} ≥ 0)
We simplified constraint (9) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(11) (x[1] + -1 ≥ 0∧max{2, -2} ≥ 0∧(-1)min{2, -2} ≥ 0 ⇒ (UIncreasing(EVAL(/@z(x[0], 2@z))), ≥)∧-1 + (-1)Bound + x[1] ≥ 0∧x[1] + (-1)max{x[1], (-1)x[1]} ≥ 0)
We simplified constraint (10) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(12) (x[1] + -1 ≥ 0∧max{2, -2} ≥ 0∧(-1)min{2, -2} ≥ 0∧-1 + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(/@z(x[0], 2@z))), ≥)∧-1 + (-1)Bound + x[1] ≥ 0∧x[1] + (-1)max{x[1], (-1)x[1]} ≥ 0)
We simplified constraint (11) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(13) (2 ≥ 0∧(2)x[1] ≥ 0∧2 ≥ 0∧x[1] + -1 ≥ 0∧4 ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(/@z(x[0], 2@z))), ≥)∧-1 + (-1)Bound + x[1] ≥ 0)
We solved constraint (12) using rule (POLY_REMOVE_MIN_MAX).We simplified constraint (13) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(14) (2 ≥ 0∧2 + (2)x[1] ≥ 0∧2 ≥ 0∧x[1] ≥ 0∧4 ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(/@z(x[0], 2@z))), ≥)∧(-1)Bound + x[1] ≥ 0)
To summarize, we get the following constraints P≥ for the following pairs.
- EVAL(x[1]) → COND_EVAL1(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)), x[1])
- (0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)), x[1])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
- COND_EVAL1(TRUE, x[0]) → EVAL(/@z(x[0], 2@z))
- (2 ≥ 0∧2 + (2)x[1] ≥ 0∧2 ≥ 0∧x[1] ≥ 0∧4 ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(/@z(x[0], 2@z))), ≥)∧(-1)Bound + x[1] ≥ 0)
The constraints for P> respective Pbound are constructed from P≥ where we just replace every occurence of "t ≥ s" in P≥ by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:
POL(=@z(x1, x2)) = -1
POL(0@z) = 0
POL(TRUE) = -1
POL(&&(x1, x2)) = 1
POL(COND_EVAL1(x1, x2)) = -1 + x2
POL(2@z) = 2
POL(EVAL(x1)) = -1 + x1
POL(!(x1)) = -1
POL(FALSE) = 2
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)
POL(%@z(x1, 2@z)1 @ {}) = max{x2, (-1)x2}
POL(%@z(x1, 2@z)-1 @ {}) = min{x2, (-1)x2}
POL(/@z(x1, 2@z)1 @ {EVAL_1/0}) = -1 + max{x1, (-1)x1}
The following pairs are in P>:
COND_EVAL1(TRUE, x[0]) → EVAL(/@z(x[0], 2@z))
The following pairs are in Pbound:
COND_EVAL1(TRUE, x[0]) → EVAL(/@z(x[0], 2@z))
The following pairs are in P≥:
EVAL(x[1]) → COND_EVAL1(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)), x[1])
At least the following rules have been oriented under context sensitive arithmetic replacement:
FALSE1 → &&(FALSE, TRUE)1
/@z1 →
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
I DP problem:
The following domains are used:
z
R is empty.
The integer pair graph contains the following rules and edges:
(1): EVAL(x[1]) → COND_EVAL1(&&(&&(>@z(x[1], 0@z), !(=@z(x[1], 0@z))), =@z(%@z(x[1], 2@z), 0@z)), x[1])
The set Q consists of the following terms:
eval(x0)
Cond_eval1(TRUE, x0)
Cond_eval(TRUE, x0)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.